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ABSTRACT Identification of amyloid beta (A8) plaques in the cerebral cortex in models of Alzheimer’s Dis-
ease (AD) is of critical importance for research into therapeutics. Here we propose an innovative framework
which automatically measures A plaques in the cortex of a rodent model, based on anatomical segmentation
using a deep learning approach. The framework has three phases: data acquisition to enhance image quality
using preprocessing techniques and image normalization with a novel plaque removal algorithm, then an
anatomical segmentation phase using the trained model, and finally an analysis phase to quantitate Ap
plaques. Supervised training with 946 sets of mouse brain section annotations exhibiting A protein-labeled
plaques (AB plaques) were trained with deep neural networks (DNNs). Five DNN architectures: FCN32,
FCN16, FCN8, SegNet, and U-Net, were tested. Of these, U-Net was selected as it showed the most
reliable segmentation performance. The framework demonstrated an accuracy of 83.98% and 91.21% of the
Dice coefficient score for atlas segmentation with the test dataset. The proposed framework automatically
segmented the somatosensory cortex and calculated the intensity and extent of AS plaques. This study
contributes to image analysis in the field of neuroscience, allowing region-specific quantitation of image

features using a deep learning approach.

INDEX TERMS Alzheimer’s disease, amyloid beta, brain atlas, deep learning, image segmentation.

I. INTRODUCTION

Alzheimer’s Disease (AD) is one of the most common types
of dementia, and the second leading cause of death in Aus-
tralia [1], [2]. AD is a degenerative brain disorder caus-
ing progressive cognitive decline and widespread neuron
death [3]. Although the cause of AD is not yet understood,
the presence of amyloid beta (Af) plaques, insoluble protein
deposits in the cerebral cortex and hippocampus, is hypothe-
sized to be a key element in the disease process [4]—[6].
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The mouse brain has been utilized as a model for many
human disorders [7]-[10] as a mouse share more than 80%
of its genome with humans [11]. Rodent studies overcome
the limitations of human experiments, such as ethical and
economic issues. However, unlike studies using human brain
image segmentation, anatomical segmentation of the mouse
brain has received comparatively little attention [8], [12].

Transgenic animals, such as mice and rats, are commonly
utilized in studying A accumulation and investigating ther-
apeutics targeted at AB removal, which requires quantitative
analysis of brain images [7]. To automate this analysis, the
use of a brain atlas to segment the anatomical structures of the
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brain is essential for anatomically accurate quantitation [13].
Several studies have been conducted to develop brain atlas
maps from brain images to help improve the AD diagnosis
process [3], [7], [13]-[15]. However, the quantitative analysis
of Ap in brain image datasets remains a great challenge in
the field of neuroscience, as it requires anatomical expertise
and compensation for the distortion of brain sections, as well
as dataset acquisition being an expensive process [3, 13,
16]. Therefore, an innovative framework for A quantitation
is needed to reduce the cost and difficulty of the process,
and reduce the numbers of experimental animals needed for
adequately powered studies.

When studying cortical pathology, such as AS plaques, the
somatosensory cortex is one of the most readily identifiable
regions in coronal sections. This region processes sensory
stimulation from innervation of the body in mammals, and
especially the mystacial vibrissae in mice [17]. Although
human AD tends to spare primary sensory areas, in trans-
genic mice the increasing level of transgene-driven A in the
somatosensory cortex disrupts neural timing relationships,
leading to abnormalities in sensory processing [18]. Accurate
quantitation of AB distribution with reference to consistent
anatomical segmentation allows greater reproducibility and
analytical reliability in studies of amyloid accumulation,
which ultimately can help to understand the mechanism of
AD in humans.

Typically, identifying cortical regions in brain sections is
performed by human experts. Like all human judgements,
however, it is subject to inconsistency, inexactness, subjec-
tivity, and a degree of irreproducibility, as well as being
hard to learn [19]. To overcome these challenges, several
previous studies have attempted consistent anatomical seg-
mentation using image processing techniques [11], [20]-[23].
Although they improved the recognition process, these
approaches still had several limitations, including limited
area localization [21], [24], the requirement for a pre-
defined template [25], [26], and constraints on the input
image [10], [23], [27]. Advances in deep learning meth-
ods offer an opportunity to overcome these limitations and
further improve anatomical registration [3], [6], [28] to
make the process automated, reproducible, and reliable [29].
However, there is no existing comprehensive deep learn-
ing framework providing AB plaque quantitation within
automatically delineated regions of interest in a mouse
brain image.

In this paper, an innovative framework, that quantitates
pathology in a transgenic mice model by automatically
measuring AB plaques in anatomically defined regions, is
proposed. The proposed framework deploys both deep learn-
ing technology and image processing techniques to extract
regions of interest within mouse brain images. Combining
advantages of both techniques, an accurate quantitation of
pathology becomes more reliable, cost-effective, objective,
and consistent, by generating region boundary guidelines for
mouse brain images in a fully automated way.
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II. LITERATURE REVIEW

A. DEVELOPING BRAIN ATLASES USING IMAGE
PROCESSING TECHNIQUES AND DEEP LEARNING
Segmentation is one of the most important analytical steps
applied to brain images for identifying anatomical struc-
tures [8], [30], [31]. Current approaches for anatomical
segmentation of the mouse brain are generally semi-
automatic [13], using supplementary image processing tools,
such as ImagelJ, custom plug-ins [7], and PyVips [6]. Con-
ventional laboratory studies use microscopic imaging of
postmortem brain slices that vary slightly in form, scale,
texture, position, and pathology [25], making conventional
manual approaches to segmentation time-consuming and
labor-intensive [8]. Several previous approaches have used
image processing techniques with the aim of simplifying this
process [21], [32]-[34].

Template-based, or model-based segmentation, has been
attempted by several groups [10], [20], [23], [25], [27].
In this approach, the template is a common reference
frame created by magnetic resonance imaging (MRI)
anatomists to consistently and accurately standardize brain
regions [31], [35], [36]. Template-based segmentation
enables regions of interest to be identified within images that
cannot be segmented by simple image processing [10], [27].
Various approaches, such as Automatic Nonlinear Image
Matching and Anatomical Labeling [20], Multiple Automati-
cally generated templates [23], and Advanced Normalization
Tools [37], have been devised to segment images using manu-
ally derived templates [26], [35]. By automatically overlaying
the predefined template on the target image, structures are
indicated by coloured labels [38], which reduces the time
and difficulty of the segmentation process [23]. Template
matching techniques generally show better performance than
manual annotation [11] as well as relieving the need for
experts to spend long periods annotating large numbers of
brain images [10], [23].

The template matching technique, however, is limited by
serious shape and alignment constraints [39] due to the diver-
sity of anatomical differences between brains [40]. These
differences prevent templates from covering all variations of
anatomical structures [22], as well as requiring a logistic dif-
ficulty of obtaining images of uniform quality and appearance
when imaging postmortem slices. Since brain sectioning and
processing is complex and exacting, variants, such as shape
distortion, uneven labelling, and tissue damage are common
in these images, which impair the reliability and accuracy
of segmentation. Therefore, a reliable and consistent image
analysis technique, robust to these variations in tissue and
image quality, is needed to overcome these constraints.

Even though there are several computer-aided diagnostic
systems for AD pathology analysis [3], [6], [41], a fully auto-
mated pipeline for anatomical segmentation and pathology
quantitation using deep learning technology has not yet been
reported. Using these approaches, anatomical registration can
be improved by applying object detection and segmentation
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technologies [13], as is used by several studies aimed at
creating brain atlases [3], [12], [13], [42], [43].

One such project used a fully convolutional neural network
(F-CNN), inspired by the DeepLab architecture, to develop
a human brain atlas from MRI scans [44], which was inde-
pendent of differences in alignment or registration of brain
sections [43]. The experiment used the Internet Brain Seg-
mentation Repository (IBSR) dataset [45], containing MRIs
with 18 classes of annotation, as well as the dataset from
the Rolandic Epilepsy (RE) study with 35 human brain
MRIs. The researchers compared the F-CNN method with
one based on a Random Forest (RF) approach, a classifica-
tion and regression algorithm with a randomizing layer [46].
The average Dice coefficient accuracy using the CNN-based
method was 82.4%, whereas that of the RF-based method was
78.8% [43]. However, they reported study limitations, such
as inaccurate segmentation of thin tail areas, the ambiguity
of training symmetric structures, and constraints of the iden-
tifying volumetric structure [43].

Another project proposed a fully-automated, deep neural
network-based method named Segmenting Brain Regions of
interest (SeBRe) [13], to overcome the difficulty of anatom-
ical segmentation, which holds vary in image shape and
size, as is common with histological processing. To anatom-
ically register sections with minimal human supervision,
SeBRe deploys optimized masks using an architecture of
region-based convolutional neural networks (R-CNN) [47]
and convolutional backbones. In use, SeBRe showed 84%
mean average precision (mAP) for the original dataset and
87% mAP for the extended test dataset, with an evenly dis-
tributed accuracy rate across predefined classes. In addition to
its excellent performance on mouse brain images, the SeBRe
pipeline achieved 95% mAP in segmenting human MRI brain
images. This approach demonstrates the utility of real-time
segmentation of microscope images, even with typical varia-
tion in morphology [13]. However, the approach was limited
to provide sectional segmentation without quantitative data.

B. QUANTITATION OF A ACCUMULATION
Although the amyloid hypothesis of AD etiology has come
under question [48], [49], AB plaque load has long been the
accepted metric for staging AD progression in postmortem
tissue [50] and recently, via selective PET ligands in clin-
ical trials for human AD [51]. In laboratory models such
as transgenic rodents [52], studies of therapeutics targeting
ApB accumulation require precise quantitation of pathology
from tissue sections, for which current approaches are often
inconsistent [41], resulting in studies which are often under-
powered to detect the effects they are designed to test [53].
Other than pathological methods, neuroimaging tech-
niques such as computerized tomography (CT), magnetic
resonance imaging (MRI) [54], or positron emission tomog-
raphy (PET) imaging [51], [55], are used to quantitate neu-
rodegenerative changes and plaque loads in the brain. These
methods are relatively non-invasive and can monitor disease
progression promptly [54], particularly when combined with
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newer modalities [56]. Imaging methods commonly use a
template-based approach [57] and multimodal contrasts [58],
however, they show low sensitivity and specificity in AB
quantitation [59].

lll. METHODOLOGY

A. FRAMEWORK OVERVIEW

The framework proposed in this paper has three phases.
First, a data acquisition phase improves image quality with
preprocessing techniques and normalization using a novel
plaque removal algorithm. Second, the anatomical segmen-
tation phase uses the trained model to identify regions of
interest (ROIs), and thirdly the analysis phase quantitates A
plaques within the ROISs of the original images.

The DNNs model is trained with the set of preprocessed
images to infer brain atlas regions from section images.
(Figure 1a). Utilizing the trained model, an atlas is inferred
from the preprocessed input image so that the somatosensory
cortex ROI can be identified (Figure 1b). This is then overlaid
on the original image (Figure 1c), and the somatosensory area
is extracted as regions of interest (Figure 1d). Finally, AS
plaques in these ROIs are quantitated for analysis (Figure 1e).

B. DATA ACQUISITION

A total of 1,558 mouse brain sectional images containing
Ap plaques were collected from 21 mice, with an average of
76 images per mouse. Six anatomical structures were anno-
tated on these sections: hippocampal formation, thalamus,
hypothalamus, retrosplenial cortex, somatosensory cortex,
and striatum. AB plaques in the images (white areas in Fig-
ure la) were removed and infilled with the average intensity
of the boundary in the training dataset.

The training dataset contained images from 6-month-old
transgenic mice with two human familial AD genes, APPswe
and PS1dE9, driven by the PrP promoter to rapidly generate
large quantities of A in their cortex [60]. The mice were
housed in standard conditions at 20°, a 12/12 hour light/dark
cycle, and with standard lab chow and water ad libitum [7].
Brains were collected as follows: mice were anaesthetized
(100 mg/kg sodium pentobarbitone i.p.; Sigma, USA) and
then transcardially perfused with 4% paraformaldehyde in a
0.01M phosphate buffer (Sigma). The brains were removed
and coronally sliced between bregma — 0.22mm and bregma
— 1.22mm (17 in total) in 50 pm intervals using a vibrating
microtome (VT 1000, Leica Microsytems, Germany). Brain
slices were incubated in 88% formic acid for 8 min at room
temperature before 6 x 5 minutes washes in 0.01M phosphate
buffered saline (PBS), to expose the Af antigen for anti-
body labelling. Sections were then incubated in 10% normal
goat serum (Sigma) in PBS, followed by an anti-amyloid-8
primary antibody (MOAB-2, 1:2000, NBP2-13075, Novus
Biologicals, USA) in 0.01M PBS, then a goat-anti-mouse-
IgG2b secondary conjugated with Alexa 546 fluorophore
(A21143, Thermo Fisher Scientific, USA). After mounting,
the sections were scanned with a VS120-L100-W Olympus
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FIGURE 1. Methodology overview. (a) Model training starts with microscopic images showing amyloid beta (Ap)
plaques. The Av algorithm deletes the plaques from the original dataset to improve the model performance. Using
the normalized datasets, an atlas segmentation model is trained from standard references. (b) The original image
is processed by the Av algorithm to be segmented by the trained model. (c) The model detects anatomical
structures including somatosensory cortex, and the original image is overlaid with the detected area. (d) A
plaques are extracted from the overlaid area and quantitated. (e) The number and extent of plaques within the
somatosensory cortex are determined as estimates of A pathology for this particular mouse.

Virtual Slide Microscope using a 20x Olympus UPLSAPO
objective.

All animal work was compliant with the NHMRC Guide-
lines for Animal Research and was approved by the Animal
Ethics Committee at the University of Tasmania, (permit
A16276).

Level 5 resolution images were extracted from the Olym-
pus VSI file format, at 8 bits per pixel and a 1:1 pixel
aspect ratio. Image extraction from original multi-resolution
VSI files generated by the microscope imaging software,
was done using the Bio-Formats plugin for ImageJ. Image
size varied according to brain section dimensions, typically
around 19200 x 38000 pixels. For standardization in training,
images were downsampled and unified to 1750 x 1250,
the maximum crop which minimizes pixel losses from the
original images.

C. AB PLAQUE DELETION

To allow the model to segment images more efficiently,
an infilling method was employed as a simple and effi-
cient method to clean the images (Figure 2). This process
is important to improve the DNN model’s performance and
capacity: deleting the plaques from the input image allows the
framework to perform consistent segmentations regardless of
plaque load. Since the acquired images vary greatly in the
number of plaques present, robustness to variation in plaque

VOLUME 9, 2021

load is essential to this framework. Thus, this process infills
B plaques with a neutral gray level to remove anatomically
irrelevant features for the anatomical registration step.

RGB images were converted to grayscale images by elim-
inating hue and saturation, whilst retaining the luminance,
as shown in equation (1) [61]:

0.2989 x R+ 0.5870 x G+ 0.1140 x B (1)

A global threshold value, T, is then calculated using Otsu’s
method [62] to minimize the variance of pixels above and
below this value and to produce a binary image, which was
then dilated by 2 pixels.

Next, all connected components from the binary image are
extracted as ‘“plaque regions”. Their boundaries are traced,
and the intensity values are averaged along the length of the
boundary to give an average intensity (Av), which is used to
infill the plaque area and thereby ‘‘remove” it from the image.

D. DATA ANNOTATION AND DIVISION

Image annotations were guided manually by experienced
neuroscientists to produce templates generated using com-
puter vision annotation tools (CVAT) (https://github.com/
opencv/cvat) in an RGB scale image format. A total of 1,558
mouse brain images were used (Table 1) as the experiment
dataset. This dataset was divided into 5-folded training data,
employed on the training and validation datasets in turns, and
testing data (Table 1). The datasets were used to train a model
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FIGURE 2. Overview of Av, the plaque filling algorithm for deletion of Amyloid beta (Ag) plaques in the dataset.

TABLE 1. Distribution of dataset for 5-fold cross validation.

No. of labeling data

Dataset Folds Images Striatum Somatosensory  Retrosplenial Thalamus Hypothalamus Hippocampal
cortex cortex formation
Train Fold 1 285 570 570 494 570 532 532
Fold 2 285 513 570 551 532 513 551
Fold 3 266 494 532 532 532 437 532
Fold 4 266 494 532 513 532 456 532
Fold 5 266 532 532 513 532 494 532
Test - 190 361 380 380 380 361 361
Total 1,558 2,964 3,316 2,983 3,078 2,793 3,040

and to test the trained model respectively. The data splitting
process ensured that the data from the same sectional image
was in the same split set. This data splitting policy ensured
mutual exclusion between the datasets, which means that the
validation and test datasets were set to be unseen data from
the view of the trained model. To enlarge the training dataset,
additional images were created by augmenting the original
images by a rotation range from +18° to —18° at 2° intervals.
This allowed the model to be trained with a more abundant
dataset of images at various angles.

E. ARCHITECTURE SELECTION AND TRAINING

A variety of DNNs were trained using collected images, along
with corresponding annotation data, to build an object detec-
tion and segmentation model (Figure 3a) [12], [63]-[66]. All
the training, validation, and test datasets were processed using
the Av algorithm as previously described (Figure 3b). With
reference to previous literature, we compared five candidates,
FCN32, FCN16, FCN8, U-Net [67], and SegNet [68], to find
the most reliable architecture for anatomical segmentation
(Figure 3c). All configurations were set to be equal for a
fair comparison, minimizing any possible variants between
model training processes. After several attempts, the training
hyperparameters were experimentally determined as follows:
training for 100 epochs with 512 steps per epoch, a learning
rate of 0.001 optimized using an Adam optimizer, and a
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batch size of 1. These trained models automatically generated
anatomical ROIs from input images (Figure 3d). After train-
ing and evaluation with statistical performance measures,
such as the Dice coefficient and accuracy [69], U-Net was
found to be the most accurate architecture.

Model training was conducted on Anaconda 4.7.11, run-
ning 64bit Ubuntu Linux 16.04.6 LTS and Python v3.8.3.
TensorFlow-GPU v1.14.0 was used to accelerate the DNN
framework’s training process and Keras v2.4.0 was used as
a Python deep learning application programming interface
(API). To allow the final model to cope with brightness
variations inherent in the image acquisition process, the Keras
framework was used to apply brightness adjustments of up to
440% to the input images.

F. Ap PLAQUE QUANTITATION

To analyze pathology, an AB plaque quantitation step was
then performed. Using the brain atlas overlay to extract the
somatosensory cortex area from the original images, the
number and pixel extent of AB plaques was calculated as an
estimate of plaque load in this region.

G. MODEL EVALUATION

The classification performance of the trained model was
evaluated using the following metrics: accuracy (2), recall (3),
precision (4) and Dice coefficient (5). Compared to the
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FIGURE 3. Scheme of model training for detection of mouse brain anatomy. (a) Transgenic mouse brains are collected and captured. Brain atlas mask
annotation data is created with reference to standard brain atlases. (b) Images are aligned and normalized, and preprocessing techniques are applied to
the adjusted image. Rotation augmentation is used to expand the data set for model training, validation and testing. (c) 5 DNNs - FCN32, FCN16, FCN8,
U-Net and SegNet - are trained and compared to select the most reliable model. Evaluation is conducted with unseen test dataset. (d) The final

segmentation from the selected model is shown overlaid on the original image.

reference annotation, each pixel is counted as one of four
possible outcomes: true positive (TP), true negative (TN),
false positive (FP) or false negative (FN) [70], from which
these metrics are derived as follows:

TP + TN
Accuracy = 2
TP+ TN + FP + FN
TP
Recall = —— 3)
TP + FN
. TP
Precision = —— “4)
TP + FP
. 2xTP
Dice = %)

2x TP+ FP+FN

IV. RESULTS

A. COMPARISON OF ARCHITECTURES

Figure 4 demonstrates the outcomes of training the five archi-
tectures on the plaque-removed dataset. U-Net (Figure 4a,
purple line) showed the highest training accuracy for most
of the training epochs, while FCN8 (green) demonstrated
the lowest training accuracy. U-Net finished its training with
99.2% of training accuracy. U-Net (Figure 4b, purple line)
showed the lowest training loss, recording 1.9% of loss at
the last epoch, whereas FCNS8 (green) showed the highest
training loss of 7.3%.
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FIGURE 4. Learning curves of accuracy (a) and loss (b) during model
training.

Figure 5 shows the segmentations produced by these five
models trained on the preprocessed test dataset. FCN32 (Fig-
ure 5¢) and U-Net (Figure 5g) are the most accurate, with very
few false positive pixels, while FCN8 (Figure 5e) and SegNet
(Figure 5f) show relatively low segmentation accuracy. FCN8
shows false positive pixels in the somatosensory cortex and
thalamus, whereas SegNet shows many true negative pixels
in both the somatosensory cortex and hypothalamus.

Table 2 compares the five trained models. In both the
validation and test datasets, U-Net shows the highest overall
result across the evaluation criteria. In the training results
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FIGURE 5. Visualized segmentation results of five models trained with the plaque preprocessed dataset.

TABLE 2. Training results of the models.

FCN32 FCN16 FCN8 SegNet U-Net
Validation dataset
Dice 92.59+0.36 92.03 +£0.54 91.62+0.33 92.41+0.19 93.64 + 0.40"
Accuracy 90.86 +0.45 90.20 + 0.64 90.48 £ 0.36 91.09+0.21 92.61 £0.18"
Recall 90.44 +0.57 89.65+0.72 89.99 +0.25 90.99 +0.21 92.56 + 0.19"
Precision 91.24+0.36 90.68 +0.59 90.92 +0.45 91.21 +£0.20 92.69 + 0.18"

Dice: Dice coefficient, the values are represented as mean + standard error mean, means in the same column with different superscripts differ

significantly *(P < 0.05) and ** (P <0.01)

(Table 2), the Dice coefficient of U-Net (93.64 + 0.40%) was
significantly (P < 0.05) higher than FCN32 (92.59 + 0.36%),
FCN16 (92.03 &+ 0.54%), FCN8 (91.62 £ 0.33%), or SegNet
(92.41 £ 0.19%). U-Net also performed significantly (P <
0.01) higher in terms of accuracy (92.61 % 0.18%), precision
(92.69 + 0.18%) and recall (92.56 & 0.19%). Additionally,
the same training process was conducted with animal-based
split dataset. However, Dice, accuracy, recall, and precision
were not significantly different between image-based splits
and animal-based splits of the dataset during validation and
testing (data not shown). In the test dataset results for trained
models (Table 3), representable models are selected from
each trained model. Model selection is based on median
values of the Dice coefficient in the results of 5-fold cross
validations. It can be seen that U-Net also performed signifi-
cantly higher than other DNNs in terms of accuracy, precision
and recall for testing datasets.

B. AUTOMATIC AB PLAQUE DETECTION IN
SOMATOSENSORY CORTEX

Table 4 reports the analysis of 8 plaques identified in the seg-
mented somatosensory cortex of the test datasets. 10 images
were randomly selected from the test datasets and the perfor-
mances of B plaque detection between experts’ manual quan-
titation and the automated framework proposed in this paper
were compared (Table 4). The proposed framework success-
fully extracts somatosensory cortex ROIs from g immuno-
labeled mouse brain images and quantitates the number and
extent of 8 plaques in those anatomical regions (Table 4). The
percentage of plaque area, also known as “‘plaque burden”
or “plaque load”, is calculated by dividing the number of
detected B pixels by the total number of segmented ROI pix-
els, from which accuracy is calculated by using ground truth
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data (Table 4). Table 4 reports that the performance of the
proposed framework shows reliable results when compared
with the performance of experts by recording an average of
95.63 accuracy.

V. DISCUSSION

The proposed framework suggests a comprehensive solution
for automated analysis of 8 plaques in specified anatomical
regions of mouse brain sections. However, there are several
potential areas of improvement needed to supplement the
reliability of the framework.

First, there are more sources of variation to be considered
in the input images when preprocessing the dataset. These
occur because the brain slices are manually placed and then
adjusted by experimenters when they are placed on the scan-
ner. In addition, because the brain slices are secured in a
floating state, it is physically hard to maintain the same angle
and position [7]. Many other factors can affect the quality of
microscopic imaging, such as tissue perfusion and fixation,
the length of time in a storage solution, the effectiveness of
antigen retrieval, the quality of primary and secondary anti-
bodies, fading of fluorophores, the intensity and alignment of
the light source and imaging optics, tissue autofluorescence,
and occasional clipping in the imaging sensor [41].

Such variants can cause irregular data during the data
augmentation process. For example, if a +20° rotation aug-
mentation is applied to an already tilted image, it may no
longer be in the acceptable range for training. To mod-
erate extreme cases, angle and brightness adjustment are
applied. The section angle is adjusted by reference to the
standardized mouse brain atlas template provided by the
Allen Institute [71] and brightness normalizing is made
using OpenCV. After angle adjustment and normalization,
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TABLE 3. Test result of the trained models.

FCN32 FCN16 FCN8 SegNet U-Net
Test dataset
Dice 89.78 90.25 89.93 89.61 91.21
Accuracy 81.64 82.45 82.06 81.59 83.98
Recall 90.04 90.43 87.95 87.59 91.54
Precision 89.59 90.15 91.26 91.92 92.25
Dice: Dice coefticient

TABLE 4. Analysis of amyloid beta (AB) plaques within test data.
Framework Expert
Test Area of Area of AB Percentage of  Accuracy Area of Area of AB Percentage of ~ Accuracy
images somatosensory plaques in AP area (%) (%) somatosensory plaques in A area (%) (%)
cortex in pixel pixel cortex in pixel pixel

0408 188227 17,947 9.53 97.54 180158 15829 8.79 94.48
0602 157443 6,547 4.16 94.29 161022 7823 4.86 90.77
0701 152156 4,517 297 97.69 172948 4810 2.78 95.90
1203 252500 1,737 0.69 98.27 230405 1432 0.62 88.79
1304 294830 13,562 4.60 95.65 269304 11482 4.26 96.90
1602 255958 31,647 12.36 98.03 253909 27939 11.00 90.79
1904 251699 6,499 2.58 85.59 270291 5039 1.86 84.36
2102 262277 6,020 2.30 91.81 244683 5592 2.29 91.42
2401 287910 18,901 6.56 97.49 260913 15388 5.90 92.15
2503 297350 238 0.08 99.95 319248 264 0.08 96.74
Mean 95.63 92.23

Percentage of A area (%): number of AP pixels / total region of interest pixels of somatosensory cortex

the resulting image set can be utilized more effectively
for model training. In addition to this, the Av algorithm is
needed to delete plaques from input images to enable accu-
rate segmentation, which might limit this framework in fully
automatic applications. To resolve this limitation, a more
automated method to apply the Av algorithm needs to be
developed.

Second, the number of DNN architectures tested was small,
given the proliferation of new models in this fast-growing
domain. It might be expected that future, new and improved
DNN architectures could show better performance than those
evaluated here.

Third, the input dataset was limited to a set of
images from one experiment. To create a suitable model
training input which mimics possible wider variations
in input images, the dataset was artificially expanded
with augmentation, by duplicating and rotating images.
Adding more datasets for training might be expected
to produce more robust performance across a range of
applications.

Fourth, the quantitation result is highly dependent on the
automatic segmentation process. The performance of the
segmentation DNN is vital for the performance of the pro-
posed framework. In addition, the quantitation result will
be affected by errors produced by each step. This succes-
sive error dependency might be lowered by applying image
processing techniques at the formal stage of quantitation.
This will be the focus of a future study that refines detected
segments by removing false positive pixels, or the use of
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machine learning based techniques for more robust plaque
quantitation [41].

Finally, the number of annotation classes for the brain
atlas regions was limited. The mouse brain contains more
than 60 major anatomical divisions and over 500 substruc-
tures [72]. In this study, only a few classes were annotated
and trained, but they provided guidance for identifying most
of the major regions. The models also accurately segmented
the somatosensory cortex, which is often assayed in animal
models of AD. Therefore, the present study forms a basis to
expand the variety of identifiable structures in future work,
using additional datasets with more extensive annotation.

An important advantage of the use of automated anatom-
ical segmentation is the potential for high-throughput
quantitation using consistent criteria. The great majority of
experimental outcomes in studies of transgenic models of
B pathology use just a few brain sections for which ROIs
are drawn by hand, and which also are quantitated using
measures highly susceptible to bias, such as manual thresh-
olding [53]. The automation, combined with robust ML based
segmentation of pathology [41], would permit large numbers
of sections to be quantitated in an unbiased, reproducible
manner that does not require experimenter blinding to study
conditions.

Along with the evaluation metrics reported, qualitative
evaluation of segmentation results should be made — not only
from the perspective of a deep learning engineer, but by
neuroscientists, who are the target domain experts for this
method. For the engineer, having a low false positive rate
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and low true negative rate for a high accuracy rate is a key
criterion. However, for a specific neuroscience application,
having a high true positive rate and high false negative rate
may be more acceptable when considering the segmenta-
tion in its regional context, rather than pixel by pixel. This
emphasizes the need for a range of performance criteria,
both quantitative and qualitative, exemplified by comparing
Table 2 and Figure 5.

VI. CONCLUSION

The proposed framework demonstrated reliable anatomical
segmentation using the standalone knowledge in the trained
DNNs. The best model, U-Net, showed an 83.98% accuracy
and a 91.21% Dice coefficient score on the test dataset.

This study contributes to image analysis in the field of
neuroscience, allowing region-specific quantitation of images
features by means of a deep learning approach. In the case
of measuring plaque loads in AD transgenic mice, this
approach offers consistent and unbiased selection of measure-
ment ROIs, using a documented and reproducible algorithmic
technique. This has the potential to improve reproducibility
and inter-study comparison, as well as reducing the intrin-
sic variation in current manual ROI selection. The aim of
this refinement is to increase the statistical power of studies
using tissue analysis, with the goal of more reliably detecting
effects, and reducing the need for large cohorts of experi-
mental animals. Going forward from this study, the authors
will work on enhancing the framework in the domains of
image transformation, machine learning, neuroanatomy, and
multi-resolution imaging. The aim of this future research is
to contribute techniques and skills which could be adopted
in medical imaging, image recognition, and artificial intelli-
gence applications.

DATA AND CODE AVAILABILITY

The data and code used in this study is publicly available from

the following link:
https://github.com/boguss1225/image-segmentation-keras
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